
Together with Univeristy of Antwerp and Port of Antwerpen, two approaches to FBG installation in three asphalt layers (placed at the bottom of each layer) were tested in the present study: (1) installation of FBGs in prefabricated asphalt specimens in the base layer, directly on the base, and (2) installation of FBGs on the surface of the previously constructed asphalt layer. Both innovative approaches allow the implementation of FBGs without sawing the whole layer into two parts. The obtained results proved a very high survival rate for the FBGs. It can be concluded that these new described methods of FBG installation—using a cross-section configuration to carry out strain measurements in two directions (transverse and longitudinal)—can be applied for the monitoring of heavy-duty pavements, while providing the possibility to further re-evaluate current pavement design methods used in Flanders.
Pavement design is essentially and usually a structural long-term evaluation process which is needed to ensure that traffic loads are efficiently distributed at all levels of the total road structure. Furthermore, to get a complete analysis of its durability behavior, long-term monitoring should be facilitated, not only from the top by falling weight deflectometer (FWD) or core drilling but preferably from inside the structure and at exactly the same positions during a long-time interval. Considering that it is very hard to devise an efficient method to determine realistic in-situ mechanical properties of pavements, the determination of strain at the bottom of asphalt pavement layers through non-destructive tests is of a great interest.
More info
Fiber Optics Sensors in Asphalt Pavement: State-of-the-Art Review
Fiber Bragg Grating Sensors in Three Asphalt Pavement Layers
Port of Antwerp en UAntwerpen leggen innovatieve asfaltweg aan